

 Navigation

 	
 index

 	
 modules |

 	Flask-Simon 0.2.0 documentation

Flask-Simon

Simon [http://simon.readthedocs.org/] is a library to help make working with MongoDB easier.
Flask-Simon was created to make it even easier to use Simon [http://simon.readthedocs.org/] with your
Flask applications.

Installation

To install the latest stable version of Flask-Simon:

$ pip install Flask-Simon

or, if you must:

$ easy_install Flask-Simon

To install the latest development version:

$ git clone git@github.com:dirn/Flask-Simon.git
$ cd Flask-Simon
$ python setup.py install

In addition to Flask-Simon, this will also install:

	Flask (0.8 or later)

	PyMongo (2.1 or later)

	Simon

Quickstart

After installing Flask-Simon, import it where you create your Flask app.

from flask import Flask
from flask.ext.simon import Simon

app = Flask(__name__)
Simon(app)

Simon will establish a connection to the database
that will be used as the default database for any Model [http://simon.readthedocs.org/em/latest/api.html#simon.Model]
classes that you define.

Configuration

Simon looks for the following in your Flask app’s
configuration:

	MONGO_URI
	A MongoDB URI [http://docs.mongodb.org/manual/reference/connection-string/] connection string specifying the
database connection.

	MONGO_HOST
	The hostname or IP address of the MongoDB server.
default: ‘localhost’

	MONGO_PORT
	The port of the MongoDB server. default: 27017

	MONGO_DNAME
	The name of the database on MONGO_HOST.
Default: app.name

	MONGO_USERNAME
	The username for authentication.

	MONGO_PASSWORD
	The password for authentication.

	MONGO_REPLICA_SET
	The name of the replica set.

The MONGO_URI configuration setting will be used before checking
any other settings. If it’s not present, the others will be used.

By default, Simon and
init_app() will use MONGO as the prefix for
all configuration settings. This can be overridden by using the
prefix argument.

Specifying a value for prefix will allow for the use of multiple
databases.

app = Flask(__name__)

app.config['MONGO_URI'] = 'mongodb://localhost/mongo'
app.config['SIMON_URI'] = 'mongodb://localhost/simon'

Simon(app)
Simon(app, prefix='SIMON')

This will allow for the use of the mongo and simon databases on
localhost. mongo will be available to models through the aliases
default and mongo. simon will be available through the alias
simon. This alias can be changed by using the alias argument.

Simon(app, prefix='SIMON', alias='other-database')

Routing

Flask-Simon provides a custom converter to allow for the use of Object
IDs in URLs.

@app.route('/<objectid:id>')

More information about converters is available in the Flask API [http://flask.pocoo.org/docs/api/#url-route-registrations].

API

	
class flask_simon.Simon(app=None, prefix='MONGO', alias=None)

	Automatically creates a connection for Simon models.

	
init_app(app, prefix='MONGO', alias=None)

	Initializes the Flask app for use with Simon.

This method will automatically be called if the app is passed
into __init__().

	Parameters:	
	app (flask.Flask) – the Flask application.

	prefix (str) – (optional) the prefix of the config settings

	alias (str) – (optional) the alias to use for the database
connection

Changed in version 0.2.0: Added support for multiple databases

New in version 0.1.0.

	
flask_simon.get_or_404(model, *qs, **fields)

	Finds and returns a single document, or raises a 404 exception.

This method will find a single document within the specified
model. If the specified query matches zero or multiple documents,
a 404 Not Found exception will be raised.

	Parameters:	
	model (simon.Model [http://simon.readthedocs.org/em/latest/api.html#simon.Model]) – the model class.

	*qs (simon.query.Q [http://simon.readthedocs.org/em/latest/api.html#simon.query.Q]) – logical queries.

	**fields (kwargs) – keyword arguments specifying the query.

	Returns:	Model [http://simon.readthedocs.org/em/latest/api.html#simon.Model] – an instance of a model.

	
class flask_simon.Model(**fields)

	Base class for all Simon models.

	
exception MultipleDocumentsFound

	Raised when more than one document is found.

	
exception Model.NoDocumentFound

	Raised when an object matching a query is not found.

	
classmethod Model.all()

	Return all documents in the collection.

If sort has been defined on the Meta class it will be
used to order the records.

	
classmethod Model.create(**fields)

	Create a new document and saves it to the database.

This is a convenience method to create a new document. It will
instantiate a new Model from the keyword arguments,
call save(), and return the instance.

If the model has the required_fields options set, a
TypeError will be raised if any of the fields are not
provided.

	Parameters:	
	safe (bool.) – (optional) DEPRECATED Use w instead.

	w (int.) – (optional) The number of servers that must receive the
update for it to be successful.

	fields (kwargs.) – Keyword arguments to add to the document.

	Returns:	Model [http://simon.readthedocs.org/em/latest/api.html#simon.Model] – the new document.

	Raises :	TypeError

	
Model.delete(**kwargs)

	Delete a single document from the database.

This will delete the document associated with the instance
object. If the document does not have an _id–this will
most likely indicate that the document has never been saved–
a TypeError will be raised.

	Parameters:	
	safe (bool.) – (optional) DEPRECATED Use w instead.

	w (int.) – (optional) The number of servers that must receive the
update for it to be successful.

	Raises :	TypeError

	
classmethod Model.find(q=None, *qs, **fields)

	Return multiple documents from the database.

This will find a return multiple documents matching the query
specified through **fields. If sort has been defined on
the Meta class it will be used to order the records.

	Parameters:	
	q (Q [http://simon.readthedocs.org/em/latest/api.html#simon.query.Q].) – (optional) A logical query to use with the query.

	*qs (*args.) – DEPRECATED Use q instead.

	fields (kwargs.) – Keyword arguments specifying the query.

	Returns:	QuerySet – query set containing
objects matching query.

Changed in version 0.3.0: qs is being deprecated in favor of q

	
classmethod Model.get(q=None, *qs, **fields)

	Return a single document from the database.

This will find and return a single document matching the
query specified through **fields. An exception will be
raised if any number of documents other than one is found.

	Parameters:	
	q (Q [http://simon.readthedocs.org/em/latest/api.html#simon.query.Q].) – (optional) A logical query to use with the query.

	*qs (*args.) – DEPRECATED Use q instead.

	fields (kwargs.) – Keyword arguments specifying the query.

	Returns:	Model [http://simon.readthedocs.org/em/latest/api.html#simon.Model] – object matching query.

	Raises :	MultipleDocumentsFound,
NoDocumentFound

Changed in version 0.3.0: qs is being deprecated in favor of q

	
classmethod Model.get_or_create(**fields)

	Return an existing or create a new document.

This will find and return a single document matching the
query specified through **fields. If no document is found,
a new one will be created.

Along with returning the Model instance, a boolean value
will also be returned to indicate whether or not the document
was created.

	Parameters:	
	safe (bool.) – (optional) DEPRECATED Use w instead.

	w (int.) – (optional) The number of servers that must receive the
update for it to be successful.

	fields (kwargs.) – Keyword arguments specifying the query.

	Returns:	tuple – the Model [http://simon.readthedocs.org/em/latest/api.html#simon.Model] and whether the
document was created.

	Raises :	MultipleDocumentsFound

	
Model.increment(field=None, value=1, **fields)

	Perform an atomic increment.

This can be used to update a single field:

>>> obj.increment(field, value)

or to update multiple fields at a time:

>>> obj.increment(field1=value1, field2=value2)

Note that the latter does not set the values of the fields,
but rather specifies the values they should be incremented by.

If the document does not have an _id–this will
most likely indicate that the document has never been saved–
a TypeError will be raised.

If no fields are indicated–either through field or through
**fields, a ValueError will be raised.

	Parameters:	
	field (str.) – (optional) Name of the field to increment.

	value (int.) – (optional) Value to increment field by.

	safe (bool.) – (optional) DEPRECATED Use w instead.

	w (int.) – (optional) The number of servers that must receive the
update for it to be successful.

	fields (kwargs.) – Keyword arguments specifying fields and
increment values.

	Raises :	TypeError, ValueError

	
Model.pop(fields, **kwargs)

	Perform an atomic pop.

Values can be popped from either the end or the beginning of a
list. To pop a value from the end of a list, specify the name of
the field. The pop a value from the beginning of a list,
specify the name of the field with a - in front of it.

If the document does not have an _id–this will
most likely indicate that the document has never been saved–
a TypeError will be raised.

	Parameters:	
	fields (str, list, or tuple.) – The names of the fields to pop from.

	safe (bool.) – (optional) DEPRECATED Use w instead.

	w (int.) – (optional) The number of servers that must receive the
update for it to be successful.

	Raises :	TypeError

New in version 0.5.0.

	
Model.pull(field=None, value=None, **fields)

	Perform an atomic pull.

With MongoDB there are two types of pull operations: $pull
and $pullAll. As the name implies, $pullAll is intended
to pull all values in a list from the field, while $pull is
meant for single values.

This method will determine the correct operator(s) to use based
on the value(s) being pulled. Updates can consist of either
operator alone or both together.

This can be used to update a single field:

>>> obj.pull(field, value)

or to update multiple fields at a time:

>>> obj.pull(field1=value1, field2=value2)

If the document does not have an _id–this will
most likely indicate that the document has never been saved–
a TypeError will be raised.

If no fields are indicated–either through field or through
**fields, a ValueError will be raised.

	Parameters:	
	field (str.) – (optional) Name of the field to pull from.

	value (scalar or list.) – (optional) Value to pull from field.

	safe (bool.) – (optional) DEPRECATED Use w instead.

	w (int.) – (optional) The number of servers that must receive the
update for it to be successful.

	fields (kwargs.) – Keyword arguments specifying fields and
the values to pull.

	Raises :	TypeError, ValueError

New in version 0.5.0.

	
Model.push(field=None, value=None, allow_duplicates=True, **fields)

	Perform an atomic push.

With MongoDB there are three types of push operations:
$push, $pushAll, add $addToSet. As the name implies,
$pushAll is intended to push all values from a list to the
field, while $push is meant for single values. $addToSet
can be used with either type of value, but it will only add a
value to the list if it doesn’t already contain the value.

This method will determine the correct operator(s) to use based
on the value(s) being pushed. Setting allow_duplicates to
False will use $addToSet instead of $push and
$pushAll. Updates that allow duplicates can combine
$push and $pushAll together.

This can be used to update a single field:

>>> obj.push(field, value)

or to update multiple fields at a time:

>>> obj.push(field1=value1, field2=value2)

If the document does not have an _id–this will
most likely indicate that the document has never been saved–
a TypeError will be raised.

If no fields are indicated–either through field or through
**fields, a ValueError will be raised.

	Parameters:	
	field (str.) – (optional) Name of the field to push to.

	value (scalar or list.) – (optional) Value to push to field.

	allow_duplicates (bool.) – (optional) Whether to allow duplicate
values to be added to the list

	safe (bool.) – (optional) DEPRECATED Use w instead.

	w (int.) – (optional) The number of servers that must receive the
update for it to be successful.

	fields (kwargs.) – Keyword arguments specifying fields and
the values to push.

	Raises :	TypeError, ValueError

New in version 0.5.0.

	
Model.raw_update(fields, **kwargs)

	Perform an update using a raw document.

This method should be used carefully as it will perform the
update exactly, potentially performing a full document
replacement.

Also, for simple updates, it is preferred to use the
save() [http://simon.readthedocs.org/em/latest/api.html#simon.Model.save] or
update() [http://simon.readthedocs.org/em/latest/api.html#simon.Model.update] methods as they will usually
result in less data being transferred back from the database.

If the document does not have an _id–this will
most likely indicate that the document has never been saved–
a TypeError will be raised.

Unlike save() [http://simon.readthedocs.org/em/latest/api.html#simon.Model.save], modified will not be
updated.

	Parameters:	
	fields (dict.) – The document to save to the database.

	safe (bool.) – (optional) DEPRECATED Use w instead.

	w (int.) – (optional) The number of servers that must receive the
update for it to be successful.

	Raises :	TypeError

	
Model.remove_fields(fields, **kwargs)

	Remove the specified fields from the document.

The specified fields will be removed from the document in the
database as well as the object. This operation cannot be
undone.

If the document does not have an _id–this will
most likely indicate that the document has never been saved–
a TypeError will be raised.

Unlike save() [http://simon.readthedocs.org/em/latest/api.html#simon.Model.save], modified will not be
updated.

If the model has the required_fields options set, a
TypeError will be raised if attempting to remove one of
the required fields.

	Parameters:	
	fields (str, list, or tuple.) – The names of the fields to remove.

	safe (bool.) – (optional) DEPRECATED Use w instead.

	w (int.) – (optional) The number of servers that must receive the
update for it to be successful.

	Raises :	TypeError

	
Model.rename(field_from=None, field_to=None, **fields)

	Perform an atomic rename.

This can be used to update a single field:

>>> obj.rename(original, new)

or to update multiple fields at a time:

>>> obj.increment(original1=new1, original2=new2)

Note that the latter does not set the values of the fields,
but rather specifies the name they should be renamed to.

If the document does not have an _id–this will
most likely indicate that the document has never been saved–
a TypeError will be raised.

If no fields are indicated–either through field_from and
field_to or through **fields, a ValueError will
be raised.

	Parameters:	
	field_from (str.) – (optional) Name of the field to rename.

	field_to (int.) – (optional) New name for field_from.

	safe (bool.) – (optional) DEPRECATED Use w instead.

	w (int.) – (optional) The number of servers that must receive the
update for it to be successful.

	fields (kwargs.) – Keyword arguments specifying fields and their
new names.

	Raises :	TypeError, ValueError

New in version 0.5.0.

	
Model.save(**kwargs)

	Save the document to the database.

When saving a new document for a model with auto_timestamp
set to True, created will be added with the current
datetime in UTC. modified will always be set with the
current datetime in UTC.

If the model has the required_fields options set, a
TypeError will be raised if any of the fields have not
been associated with the instance.

	Parameters:	
	safe (bool.) – (optional) DEPRECATED Use w instead.

	w (int.) – (optional) The number of servers that must receive the
update for it to be successful.

	Raises :	TypeError

Changed in version 0.4.0: created is always added to inserted documents when
auto_timestamp is True

	
Model.save_fields(fields, **kwargs)

	Save the specified fields.

If only a select number of fields need to be updated, an atomic
update is preferred over a document replacement.
save_fields() takes either a single field name or a list of
field names to update.

All of the specified fields must exist or an
AttributeError will be raised. To add a field to the
document with a blank value, make sure to assign it through
object.attribute = '' or something similar before calling
save_fields().

If the document does not have an _id–this will
most likely indicate that the document has never been saved–
a TypeError will be raised.

Unlike save() [http://simon.readthedocs.org/em/latest/api.html#simon.Model.save], modified will not be
updated.

	Parameters:	
	fields (str, list, or tuple.) – The names of the fields to update.

	safe (bool.) – (optional) DEPRECATED Use w instead.

	w (int.) – (optional) The number of servers that must receive the
update for it to be successful.

	Raises :	AttributeError, TypeError

	
Model.update(**fields)

	Perform an atomic update.

If only a select number of fields need to be updated, an atomic
update is preferred over a document replacement.
update() takes a series of fields and values through its
keyword arguments. This fields will be updated both in the
database and on the instance.

If the document does not have an _id–this will
most likely indicate that the document has never been saved–
a TypeError will be raised.

Unlike save() [http://simon.readthedocs.org/em/latest/api.html#simon.Model.save], modified will not be
updated.

	Parameters:	
	safe (bool.) – (optional) DEPRECATED Use w instead.

	w (int.) – (optional) The number of servers that must receive the
update for it to be successful.

	fields (kwargs.) – The fields to update.

	Raises :	TypeError

	
class flask_simon.ObjectIDConverter(map)

	Convert Object IDs for use in view routing URLs.

Full details of how to query using get_or_404() can
be found in the Simon API [http://simon.readthedocs.org/em/latest/api.html#simon.Model.get].

Further Reading

For more information, check out the Simon docs [http://simon.readthedocs.org/] and the
MongoDB docs [http://www.mongodb.org/display/DOCS/Home].

Changelog

0.2.0 (2013-02-04)

	Add Object ID URL converter

	Support importing most of Simon’s functionality through
flask.ext.simon

	Add support for multiple databases

	Add support for settings other than MONGO_URI

	Require Simon 0.2 or greater

0.1.0 (2013-01-21)

	Initial release

 Copyright 2013, Andy Dirnberger.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	develop

 	0.2.0

 	0.1.0

 Navigation

 	
 index

 	
 modules |

 	Flask-Simon 0.2.0 documentation

 Python Module Index

 f

 			

 		
 f	

 	
 	
 flask_simon	

 Copyright 2013, Andy Dirnberger.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	develop

 	0.2.0

 	0.1.0

 Navigation

 	
 index

 	
 modules |

 	Flask-Simon 0.2.0 documentation

Index

 A
 | C
 | D
 | F
 | G
 | I
 | M
 | O
 | P
 | R
 | S
 | U

A

 	

 	all() (flask_simon.Model class method)

C

 	

 	create() (flask_simon.Model class method)

D

 	

 	delete() (flask_simon.Model method)

F

 	

 	find() (flask_simon.Model class method)

 	

 	flask_simon (module)

G

 	

 	get() (flask_simon.Model class method)

 	get_or_404() (in module flask_simon)

 	

 	get_or_create() (flask_simon.Model class method)

I

 	

 	increment() (flask_simon.Model method)

 	

 	init_app() (flask_simon.Simon method)

M

 	

 	Model (class in flask_simon)

 	Model.MultipleDocumentsFound

 	

 	Model.NoDocumentFound

O

 	

 	ObjectIDConverter (class in flask_simon)

P

 	

 	pop() (flask_simon.Model method)

 	pull() (flask_simon.Model method)

 	

 	push() (flask_simon.Model method)

R

 	

 	raw_update() (flask_simon.Model method)

 	remove_fields() (flask_simon.Model method)

 	

 	rename() (flask_simon.Model method)

S

 	

 	save() (flask_simon.Model method)

 	save_fields() (flask_simon.Model method)

 	

 	Simon (class in flask_simon)

U

 	

 	update() (flask_simon.Model method)

 Copyright 2013, Andy Dirnberger.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	develop

 	0.2.0

 	0.1.0

 _static/down.png

_static/plus.png

_static/comment.png

_static/minus.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/file.png

search.html

 Navigation

 		
 index

 		
 modules |

 		Flask-Simon 0.2.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Andy Dirnberger.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		latest

 		develop

 		0.2.0

 		0.1.0

_static/comment-close.png

_static/up-pressed.png

_static/down-pressed.png

_static/up.png

